Laboratory of brain structure and plasticity in human and animal models

Dr. Carmen Cavada, Dr. Miguel Angel García-Cabezas & Dr. Javier Gilabert-Juan

The study of the human cognitive capacities and specific brain disease, like neurodegeneration, requires a multidisciplinary approach combining the analysis of neurotypical and pathological postmortem human brains with animal models of neurogenerative disease and psychiatric disorders. Our laboratory focuses on the structure of the cerebral cortex, the thalamus, and the basal ganglia with special attention to the distribution of synaptic plasticity markers and epigenetic regulation in relation with Alzheimer´s disease, the progressive Parkinson's disease model in macaques, and models of schizophrenia in rodents.

 

Principal investigators:

Dra. Carmen Cavada: Catedrática de Anatomía y embriología humana de la Facultad de Medicina de la UAM.

Dr. Miguel Ángel García-Cabezas: Profesor Titular de Anatomía y embriología humana en la Facultad de Medicina de la UAM.

Dr. Javier Gilabert-Juan: Profesor contratado doctor de Histología humana en la Facultad de Medicina de la UAM.

 

Laboratory members

Dr. David Vega Avelaira: Profesor ayudante doctor de Histología humana en la Facultad de Medicina de la UAM.

Dra. Isabel Pérez Santos: Profesor ayudante de Anatomía y embriología humana en la Facultad de Medicina de la UAM.

Dra. Josefa Zaldívar: Investigadora postdoctoral (Contrato Margarita Salas) en la Facultad de Medicina de la UAM.

Alicia Uceda Heras: Personal investigador en formación en la Facultad de Medicina de la UAM.

Blanca Sánchez Moreno: Estudiante de doctorado en la Facultad de Medicina de la UAM.

Lola Josefina Díaz Feliz: Estudiante de doctorado en la Facultad de Medicina de la UAM.

 

Past Lab Members, current employment

Former lab members

Sevim Kandis: Postdoctoral researcher (TUBITAK grant, 2022-23).

Valentina Boncio: student of Medicine, UAH

Gonzalo Aparicio Rodríguez: student in the Master´s Program in Neuroscience UAM

Karolina Mosior: student of Medicine, UAM

Sara Ruíz Cabrera: student of Biology, UAM

 

Selected Publications

Studies in brains of human and non-human primates

  1. Uceda-Heras A, Aparicio-Rodríguez G, García-Cabezas MÁ. (2024) Hyperphosphorylated tau in Alzheimer´s disease disseminates along pathways predicted by the Structural Model for Cortico-cortical Connections. Journal of Comparative Neurology, 532: e25623. https://onlinelibrary.wiley.com/doi/10.1002/cne.25623
  2. Ruiz-Cabrera S, Pérez-Santos I, Zaldivar-Diez J, García-Cabezas MÁ. (2023) Expansion modes of primate nervous system structures in the light of the Prosomeric Model. Frontiers in Mammal Science, 2: 1241573. https://www.frontiersin.org/articles/10.3389/fmamm.2023.1241573/full
  3. Aparicio-Rodríguez GGarcía-Cabezas MÁ. (2023) Comparison of the predictive power of two models of cortico-cortical connections in primates: The Distance Rule Model and the Structural Model. Cerebral Cortex, 33: 8131-8149. https://doi.org/10.1093/cercor/bhad104 
  4. Sancha-Velasco A, Uceda-Heras A, García-Cabezas MÁ. (2023) Cortical type: A conceptual tool for meaningful biological interpretation of high-throughput gene expression data in the human cerebral cortex. Frontiers in Neuroanatomy, 17: 1187280. https://www.frontiersin.org/articles/10.3389/fnana.2023.1187280/full
  5. García-Cabezas MÁ*, Pérez-Santos I*, Cavada C. (2023) Stereotaxic cutting of post-mortem human brains for neuroanatomical studies. *Both authors have equally contributed. Frontiers in Neuroanatomy, 17: 1176351. https://www.frontiersin.org/articles/10.3389/fnana.2023.1176351/full
  6. Pérez-Santos I*, García-Cabezas MÁ*, Cavada C. (2023) Mapping the primate thalamus: systematic approach to analyze the distribution of subcortical neuromodulatory afferents. Brain Structure and Function 228: 1153-1176. doi: 10.1007/s00429-023-02619-w. *Both authors have equally contributed. https://link.springer.com/content/pdf/10.1007/s00429-023-02619-w.pdf.
  7. García-Cabezas MÁ, Pérez-Santos I, Cavada C. (2023) Mapping the primate thalamus: historical perspective and modern approaches for defining nuclei. Brain Structure and Function 228: 1125-1151. doi: 10.1007/s00429-022-02598-4. https://rdcu.be/c24Vn
  8. García-Cabezas MÁ, Hacker JL, Zikopoulos B. (2023) Homology of neocortical areas in rats and primates based on cortical type analysis: An update of the Hypothesis on the Dual Origin of the Neocortex. Brain Structure and Function 228: 1069-1093. doi: 10.1007/s00429-022-02548-0. https://link.springer.com/article/10.1007/s00429-022-02548-0
  9. Pérez-Santos I, Palomero-Gallagher N, Zilles K, Cavada C. (2021) Distribution of the noradrenaline innervation and adrenoceptors in the macaque monkey thalamus. Cerebral Cortex 31: 4115-4139. https://academic.oup.com/cercor/article/31/9/4115/6276648
  10. García-Cabezas MÁ, Hacker JL, Zikopoulos B. (2020) A protocol for cortical type analysis of the human neocortex applied on histological samples, the Atlas of von Economo and Koskinas, and Magnetic Resonance Imaging. Frontiers in Neuroanatomy, 14: 576015. https://www.frontiersin.org/articles/10.3389/fnana.2020.576015/full
  11. Timbie C*, García-Cabezas MÁ*, Zikopoulos B, Barbas H. (2020) Organization of primate amygdalar-thalamic pathways for emotions. PLoS Biology, 18: e3000639. *Both authors have equally contributed. https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000639

Studies in brains of non-human parkinsonian primates

  1. Del Rey NLG, García-Cabezas MÁ. (2023) Cytology, architecture, development, and connections of the primate striatum: Hints for human pathology. Neurobiology of Disease, 176; 105945. https://www.sciencedirect.com/science/article/pii/S0969996122003370
  2. Del Rey NLG, Trigo-Damas I, Obeso JA, Cavada C, Blesa J. (2022) Neuron types in the primate striatum: Stereological analysis of projection neurons and interneurons in control and parkinsonian monkeys. Neuropathology and Applied Neurobiology, 48, e12812. https://onlinelibrary.wiley.com/doi/10.1111/nan.12812
  3. Monje MHG, Blesa J, García-Cabezas MÁ, Obeso JA, Cavada C. (2020) Changes in thalamic dopamine innervation in a progressive Parkinson's disease model in macaque monkeys. Movement Disorders, 35: 419-430. https://movementdisorders.onlinelibrary.wiley.com/doi/10.1002/mds.27921
  4. Jiménez-Sánchez L, Blesa J, Del Rey ND, Monje MHG, Obeso JA, Cavada C. (2020) Serotonergic innervation of the striatum in a nonhuman primate model of Parkinson’s disease. Neuropharmacology, 170: 107806. https://www.sciencedirect.com/science/article/pii/S0028390819303685

Studies in human psychiatry and animal models of psychiatric diseases

  1. Perez-Rando M*, Carceller H*, Castillo-Gomez E*, Bueno-Fernandez C*, García-Mompó C*, Gilabert-Juan J*, Guirado R*, Pesarico AP*, Nacher J. (2022) Impact of stress on inhibitory neuronal circuits, our tribute to Bruce McEwen. Neurobiology of Stress, 19: 100460. *Both authors have equally contributed. https://www.sciencedirect.com/science/article/pii/S2352289522000352
  2. Vincent C*, Gilabert-Juan J*, Gibel-Russo R, Alvarez-Fischer D, Krebs M-O, Le Pen G, Prochiantz A, Di Nardo A. (2021) Non-cell autonomous OTX2 transcription factor regulates anxiety-related behaviors in the mouse. Molecular Psychiatry, 26: 6469-6480. *Both authors have equally contributed. https://www.nature.com/articles/s41380-021-01132-y
  3. Garcia-Mompo C, Curto Y, Carceller H, Gilabert-Juan J, Rodriguez-Flores E, Guirado R, Nacher J. (2020) Δ-9-Tetrahydrocannabinol treatment during adolescence and alterations in the inhibitory networks of the adult prefrontal cortex in mice subjected to perinatal NMDA receptor antagonist injection and to postweaning social isolation. Translational Psychiatry, 10: 177. https://www.nature.com/articles/s41398-020-0853-3
  4. Sanjuán J, Castro-Martínez XH, García-Martí G, González-Fernández J, Sanz-Requena R, Haro JM, Meana JJ, Martí-Bonmatí L, Nacher J, Sebastiá-Ortega N, Gilabert-Juan J*, Moltó MD*. FOXP2 expression and gray matter density in the male brains of patients with schizophrenia. Brain Imaging and Behavior, 2020 15: 1403-1411. *Corresponding author. https://link.springer.com/article/10.1007/s11682-020-00339-x
  5. Trutzer IM, García-Cabezas MÁ, Zikopoulos B. (2019) Postnatal development and maturation of layer 1 in the lateral prefrontal cortex and its disruption in autism. Acta Neuropathologica Communications, 7: 40. https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0684-8